Periodontal Ligament Mesenchymal Stromal Cells Increase Proliferation and Glycosaminoglycans Formation of Temporomandibular Joint Derived Fibrochondrocytes
نویسندگان
چکیده
OBJECTIVES Temporomandibular joint (TMJ) disorders are common disease in maxillofacial surgery. The aim of this study is to regenerate fibrocartilage with a mixture of TMJ fibrochondrocytes and periodontal ligament derived mesenchymal stem cells (PD-MSCs). MATERIALS AND METHODS Fibrochondrocytes and PD-MSC were cocultured (ratio 1 : 1) for 3 weeks. Histology and glycosaminoglycans (GAGs) assay were performed to examine the deposition of GAG. Green florescent protein (GFP) was used to track PD-MSC. Conditioned medium of PD-MSCs was collected to study the soluble factors. Gene expression of fibrochondrocytes cultured in conditioned medium was tested by quantitative PCR (qPCR). RESULTS Increased proliferation of TMJ-CH was observed in coculture pellets when compared to monoculture. Enhanced GAG production in cocultures was shown by histology and GAG quantification. Tracing of GFP revealed the fact that PD-MSC disappears after coculture with TMJ-CH for 3 weeks. In addition, conditioned medium of PD-MSC was also shown to increase the proliferation and GAG deposition of TMJ-CH. Meanwhile, results of qPCR demonstrated that conditioned medium enhanced the expression levels of matrix-related genes in TMJ-CH. CONCLUSIONS Results from this study support the mechanism of MSC-chondrocyte interaction, in which MSCs act as secretor of soluble factors that stimulate proliferation and extracellular matrix deposition of chondrocytes.
منابع مشابه
The potential of human-derived periodontal ligament stem cells to osteogenic differentiation: An In vitro investigation
Background: Periodontal ligament stem cells (PDLSCs) are considered as a type of mesenchymal stem cell that is beneficial target for numerous clinical applications in periodontal tissue regeneration therapy. Materials and Methods: This study examined the effects of dexamethasone (Dex) on human PDLSCs in vitro. PDLSCs obtained from the roots of patient’s teeth were cultured with Dex (0....
متن کاملBeneficial Effects of Coculturing Synovial Derived Mesenchymal Stem Cells with Meniscus Fibrochondrocytes Are Mediated by Fibroblast Growth Factor 1: Increased Proliferation and Collagen Synthesis
Meniscus reconstruction is in great need for orthopedic surgeons. Meniscal fibrochondrocytes transplantation was proposed to regenerate functional meniscus, with limited donor supply. We hypothesized that coculture of synovial mesenchymal stem cells (SSC) with meniscal fibrochondrocytes (me-CH) can support matrix production of me-CH, thus reducing the number of me-CH needed for meniscus reconst...
متن کاملTumor Associated Mesenchymal Stromal Cells Show Higher Immunosuppressive and Angiogenic Properties Compared to Adipose Derived MSCs
Background: Differentiation, migratory properties and availability of Mesenchymal Stromal Cells (MSC) have become an important part of biomedical research. However, the functional heterogeneity of cells derived from different tissues has hampered providing definitive phenotypic markers for these cells. Objective: To characterize and compare the phenotype and cytokines of adipose derived MSCs (...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملFibrochondrogenesis of hESCs: growth factor combinations and cocultures.
The successful differentiation of human embryonic stem cells (hESCs) to fibrochondrocyte-like cells and characterization of these differentiated cells is a critical step toward tissue engineering of musculoskeletal fibrocartilages (e.g., knee meniscus, temporomandibular joint disc, and intervertebral disc). In this study, growth factors and primary cell cocultures were applied to hESC embryoid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014